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Abstract-Dynamic crack growth is analyzed numerically for a plane strain block with an initial
central crack subject to impact tensile loading. The material is characterized as an isotropically
hardening elastic-viscoplastic solid. A cohesive surface constitutive relation is also specified that
relates the tractions and displacement jumps across the crack plane. In this formulation crack
initiation, crack growth and crack arrest emerge naturally as outcomes of the imposed loading,
without any ad hoc assumptions concerning crack growth criteria. Full transient analyses are .::arried
out using two characterizations of strain rate hardening; power law strain rate hardening and a
combined power law~xponential relation that gives rise to enhanced strain rate hardening at high
strain rates. The effects of the strain rate hardening characterization on crack initiation, crack
growth and crack arrest are investigated. Enhanced strain rate hardening is found to lead to higher
crack speeds, to lower toughness values and to crack tip fields that are more like those of an elastic
solid than for the power law rate hardening solid. Additionally, some parameter studies varying the
cohesive surface strength and the material flow strength are carried out. The effective stress intensity
factor is found to increase dramatically at a certain value of the crack speed that depends on the
cohesive surface strength, the material flow strength, the characterization of strain rate hardening
and the impact velocity, but there is a range where the crack speed at which the increase in effective
stress intensity factor occurs is not very sensitive to impact velocity. © 1997 Elsevier Science Ltd.
All rights reserved.

1. INTRODUCTION

Rather few solutions are available for the transient growth of tensile cracks in inelastic
solids. Analyses of fast crack growth in structural metals have generally either assumed a
steady state, e.g., Lam and Freund (1985), Varias and Shih (1994), or have been based on
an approach where a material and crack speed dependent value of a characterizing
parameter, such as the energy release rate or the stress intensity factor, is used in conjunction
with a crack tip equation of motion, Freund (1990), e.g., Brickstad and Nilsson (1980),
Lee and Prakash (1995). Another approach involves incorporating detailed physically
based models of the micromechanisms of failure into the material's constitutive description,
as, for example, in Needleman and Tvergaard (1991) and Tvergaard and Needleman (1993).

Here, a phenomenological approach is adopted, where the fracture characteristics of
the material are embedded in a cohesive surface traction-displacement separation relation,
Needleman (1987). This cohesive surface framework has been used previously to model
quasi-static crack growth in plastically deforming solids, e.g., Needleman (1990a, b), Tver­
gaard and Hutchinson (1992), and dynamic crack growth in elastic solids, e.g., Xu and
Needleman (1994). Crack initiation, crack growth and crack arrest emerge naturally as
outcomes of the imposed loading and are calculated directly in terms of the properties of
the material and of the parameters characterizing the cohesive surface separation law. The
cohesive parameters include a strength and the work of separation per unit area so that,
from dimensional considerations, a characteristic length enters the formulation.

Full finite strain transient analyses are carried out for a plane strain block with an
initial central crack, subject to tensile impact loading. The constitutive relation for the block
material is that of an isotropic hardening elastic-viscoplastic solid. Two characterizations of
the material strain rate sensitivity are considered. In some calculations, a pure power law
relation is used, while in others the enhanced strain rate sensitivity exhibited by many
metals at high strain rates, e.g., Campbell and Ferguson (1970), Klopp et al. (1985), is
modeled. In all calculations, attention is confined to a single cohesive surface, which restricts
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the crack to grow along the initial crack line. The material and cohesive parameters are
chosen to give deformation behavior and toughness values representative of a structural
steel.

The effect of enhanced strain rate hardening at high strain rates has been studied by
Freund and Hutchinson (1985) and Mataga et al. (1987) assuming steady state growth and
small scale yielding. These studies indicate that the enhanced strain rate sensitivity at high
strain rates can playa significant role in the macroscopic ductile-brittle transition. The
numerical, full field transient solutions obtained here exhibit, in detail, the role that high
strain rate plasticity plays in limiting attainable crack speeds and in setting the amount of
dissipation accompanying crack growth.

2. FORMULATION

The cohesive surface formulation and numerical method follow that in Xu and Needle­
man (1994). The difference here is that the material is taken to be elastic-viscoplastic
and attention is confined to a single cohesive surface. A finite strain Lagrangian formulation
is used, with the initial undefonned configuration taken as reference, so that all field
quantities are considered to be functions ofconvected coordinates, yi, which serve as particle
labels, and time t. The principle of virtual work is written as

r s:bFdV- r T-bAdS = r T-budS- rp ~::-bUdVJv JSlnt JSext Jv
(I)

where s is the nonsymmetric nominal stress tensor, u is the displacement vector, F is the
deformation gradient, A is the displacement jump across the cohesive surface, A: B denotes
AUBji, V, Sexr and Sin! are the volume, external surface area and internal cohesive surface
area, respectively, of the body in the reference configuration. The density of the material in
the reference configuration is p and the traction vector T and the reference configuration
normal n are related by T = n -s. Also, s = F- 1

- 't, where 't is the Kirchhoff stress,
't = det(F)a, with a being the Cauchy stress.

Computations are carried out for center cracked specimens, with initial height 2L,
initial width 2w and an initial crack of length 2a; along y2 = 0, as sketched in Fig. l. We
confine attention to specimens having L = 30 mm, W = 30 mm and an initial crack length
of ai = to mm. Plane strain conditions are assumed to prevail and a Cartesian coordinate
system is used as reference, with the i - y2 plane as the plane of deformation.

At t = 0, the body is stress free and at rest. Equal and opposite normal velocities are
prescribed on the edges at l = ±L, with the shear traction required to vanish. The edges

t t t t t
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2LI· ..IY 1

2aj

2w

J J J J J
Fig. I. Geometry of the center cracked specimen.
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at l = ±ware traction free. The cohesive surface lies on I = 0 and III > ai' with the
initial crack specified by

(2)

Symmetry conditions are presumed so that only one quarter of the specimen is analyzed
numerically and the remaining boundary conditions are

where in (5)

Ul = 0, T 2 = 0 onl = 0

T 1 = 0, T 2 = 0 onl = w

U2 = JV(t) dt, T 1 = 0 ony2 = L

{
V1t1tr> for t:::; t,;

Vet) =
VI' for t> t,.

(3)

(4)

(5)

(6)

The volumetric constitutive law is that of an elastic-viscoplastic isotropic hardening
solid. Any effects of the temperature rise accompanying plastic dissipation are neglected
and an isothermal constitutive relation is used. The total rate of deformation,
D = sym(F· F- 1

), is written as the sum of an elastic part, De, and a plastic part I)P so that

D = De+DP.

Small elastic strains and elastic isotropy are presumed so that

with i the Jaumann rate of Kirchhoff stress and

E [, v ]2=- I +--I®I
I +v 1-2v

(7)

(8)

(9)

where E is the Young's modulus, v is Poisson's ratio, I and I' are the second and fourth
order identity tensors, respectively, and ® denotes the tensor product, (A ® B)ijk/ = Aijd'.

The speeds of dilatational, shear and Rayleigh surface waves are, e.g., Freund (1990),

E(1-v) ~

p(1 +v)(1-2v)' C
s = -J~'

The viscoplastic flow law is

3~ ,
I)P =-'1'

2ii

where the effective plastic strain rate ~ is

and

0.862+ 1.14v
CR = Cs 1+v (10)

(11)

(12)
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(13)

(14)

Here, a superposed dot denotes differentiation with respect to time, B = J~ dt, (10 is a
reference flow strength, N is the strain hardening exponent and R() is a strain rate hardening
function. Thermal softening is not accounted for in (14).

In some computations, R is taken to be a pure power law, i.e.,

R(x) = 61 (x) = 60X
1jm (15)

where eo is a reference strain rate and m is the strain rate hardening exponent. In other
calculations, the increased rate sensitivity at high strain rates is accounted for. Then, as in
Zhou et al. (1994),

(16)

with i:1(x) given by (15) and

(17)

The form (16) provides a smooth transition between a power law at low strain rates (15)
and an exponential relation at high strain rates (16), as shown in Fig. 2. The exponential
relation gives rise to an enhanced strain rate sensitivity at high strain rates that is rep­
resentative of the behavior found experimentally in mild steels by Campbell and Ferguson
(1970). Subsequently, materials characterized by (15) will be referred to as power law strain
rate hardening materials and materials characterized by (16) as materials with enhanced
strain rate hardening.

The material properties are taken to be representative ofa structural steel with E = 211
GPa, v= 0.3, (10 = 1500,1000,857 MPa, N = 0.1, m = 0.01, eo = lis, em = 5 x 107/s, a = 10
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Fig. 2. Dependence of the normalized flow strength, (J/g, on plastic strain rate, ~.
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and p = 7800kg/m3 = 7.8 x 10-3 MPa/(m/s)z. From (10), thedilational, shear and Rayleigh
wave speeds are 6034 mIs, 3226 mls and 2987 mIs, respectively. With this choice of
parameters the transition from power law strain rate hardening to enhanced strain rate
hardening takes place at a strain rate of about 5x 103Is.

The constitutive law for the cohesive surface is taken to be elastic so that any dissipation
associated with separation is neglected. The traction across the cohesive surface, which lies
on yZ = 0 and Iyll > aj, is given by

(18)

Because the crack is constrained to grow along the initial crack line and symmetry conditions
prevail about that line, only normal separation occurs. The specific form used for the
potential, rP, is the exponential function of Rose et al. (1981)

(19)

where rPn is the work of normal separation, An = 2uz(l, 0) is the normal displacement jump
across the cohesive surface and bn is the cohesive characteristic length. Figure 3 shows the
normal traction across the cohesive surface obtained from (19), Tn> as a function of An. At
An = bn> the magnitude of the traction across the cohesive surface attains a maximum, (Jmax'
The work ofseparation, the cohesive surface strength and the cohesive surface characteristic
length are related by

(20)

When bn is substantially smaller than all geometric lengths, crack growth predictions are
not sensitive to the shape of the potential, Needleman (1990a). In the calculations here, the
cohesive surface characteristic length is fixed at bn= 21lm; the cohesive strength, (Jmax, and
consequently the work of separation, rPn, are varied.

Under dynamic loading conditions the J-integral, Rice (1968), involves an area integral
as well as a line integral, Nakamura et al. (1985),
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Fig. 3. Normalized normal traction, Tn/u~xo across the cohesive surface as a function of I!1n/f>n.
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Fig. 4. Finite element mesh near the initial crack tip.

i[ ou] f[ ov ou Ov]J= (W+L)nl-To- ds+ p_o__pv o_ dA
r ol A ot ol ol

(21)

where v = ou/ot, W = J't': Ddt, L = pv 0 v/2, r is a path surrounding the crack tip and nl is
the component of the normal to r in the i-direction.

The finite element discretization is based on linear displacement triangular elements
that are arranged in a 'crossed-triangle' quadrilateral pattern. The finite element mesh
consists of 13,500 quadrilateral elements, with a uniform region ahead of the initial crack
surrounded by a graduated mesh out to the specimen boundaries. The uniform region has
200 x 10 square elements, with side length 0.02 mm, as shown in Fig. 4. The equations
resulting from substituting the finite element discretization into (1) are of the form

(22)

where M is a mass matrix, U is the nodal displacement vector and R is the nodal force
vector. The equations of motion (22) are integrated numerically by an explicit integration
procedure, the Newmark p-method with p = 0, Belytschko et al. (1976). A lumped mass
matrix is used instead of the consistent mass matrix, since this has been found preferable
for explicit time integration procedures, from the point of view of accuracy as well as
computational efficiency, Krieg and Key (1973). The constitutive updating is based on the
rate tangent modulus method of Peirce et al. (1984).

3. RESULTS

Figure 5 shows the effect of varying the flow strength, 0'0, with the cohesive strength
fixed at O'mfJX = 3000 MPa and with an impact velocity, VI> of 10 m/s. The material strain
rate sensitivity is taken to be characterized by the power law relation (15). The ratios (Jmax/(JO

equal to 2.0, 3.0 and 3.5 correspond to flow strengths of 1500 MPa, 1000 MPa and 857
MPa, respectively. For comparison purposes, results of a calculation with elastic material
behavior, I)P == 0 in (7), are also shown and denoted by O'mfJx/(Jo = O.

The first loading wave arrives at the crack tip at 4.98 p.s after impact and the next
loading wave at 14.94 p.s. The plastic deformation associated with the impact is negligible
so that the stress carried by the loading wave is given by PCdVI' An impact velocity of 10
m/s then corresponds to a stress level of 470 MPa. However, because there is impact at
both ends, the stress level on the crack plane when the first loading wave arrives is 940
MPa.

Curves of crack speed, a, vs time are shown in Fig. 5a. The crack location is identified
with Lln ~ 5bn and the curve of crack location vs time is differentiated as described in Xu
and Needleman (1994) to obtain the crack speed. There is a delay between the arrival of
the loading wave and the initiation of crack growth that increases with decreasing flow
strength. The calculations are terminated when the crack approaches the end of the uniform
mesh region. When the material behavior is elastic, the crack speed increases monotonically.
With O'mfJx/O'o = 2.0, the crack speed vs time curve is identical to that for the corresponding
elastic solid in the early stages of crack growth, but subsequently the crack speed is
somewhat slower. In this case, the initiation of crack growth precedes the development of
significant plastic deformation. When O'max/(JO is increased to 3.0, the delay between the
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Fig. 5. Comparison of the crack growth behavior for various ratios umax/uo, Umax = 3000 MPa and
power law strain rate hardening, (15). The impact velocity is VI = 10 m/s. (a) Crack speed, Ii, vs
time, t. (b) Normalized stress intensity factor, K/~, vs normalized crack growth, t!a/Ro. (c) Nor­
malized stress intensity factor, K/~, vscrack speed Ii. A value Ro = 0.40 mm is used for normalizing

the results of the calculation with elastic material behavior.

arrival of the loading wave and the onset of crack growth increases somewhat, and plastic
flow precedes the onset of crack growth. With (Jmaxl(Jo = 3.5, the onset of significant crack
growth is further delayed, until ~8.5 J1.s. For the calculations with (Jmaxl(Jo = 3.0 and
(Jmaxl(Jo = 3.5, the crack speeds exhibit a local maximum. In Siegmund and Needleman
(1996), it was found that the time at which the maximum crack speed is attained depends
on impact velocity. Hence, the crack speed maximum is not a consequence of wave effects.
For (Jmaxl(Jo = 3.0, the crack speed reaches a maximum of 1315 m/s at 8.74 J1.s and then
decreases. With (Jmaxl(Jo = 3.5 the crack speed reaches a maximum of 884 m/s at 8.82 J1.S and
the crack subsequently arrests.

Figure 5b shows curves of normalized stress intensity factor, KIKo, vs the normalized
amount of crack growth, ~alRo. Here, K is defined in terms of the J-integral in (21) by

(23)

The results are presented in terms of K (23), which is the stress intensity factor in small
scale yielding, in order to make contact with previous work. In all calculations here, except
for some cases in Fig. 6 with increased impact velocity, plastic deformation is confined to
a region near the tip that is small compared with the overall specimen dimensions. Using
(21), J was calculated on several contours outside the uniformly spaced mesh region, with
any contribution ofthe cohesive surface ignored. The deviation on all paths away from the
uniform mesh region was within 5%, with the deviation being less in the early stages of
crack growth.

Additionally, the reference quantities
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Fig. 6. Normalized stress intensity factor, K/~, vs crack speed, a, with (J"""" = 3000 MPa, (Jo = 1000
MPa and power law strain rate hardening, (15), for various values of the impact velocity, VI = 5,
10, IS, 20 and 30 m/s. For comparison purposes, results from a calculation with elastic material

behavior, VI = 10 mls and (J=x = 3000 MPa are also shown.

[!5;cP. 1 (Ko)2K - R ---
0- (1-v2 ) 0 - 3n 0'0

(24)

are used for normalization to facilitate comparison with the quasi-static results in Tvergaard
and Hutchinson (1992). The quantity Ko defines a reference stress intensity factor and Ro
is a reference plastic zone size. With O'max = 3000 MPa, Ko is 61 MPa~. The value of Ro
varies with 0'0; for 0'0 = 1500 MPa, Ro = 0.18 mm; for 0'0 = 1000 MPa, Ro = 0.40 mm, and
with 0'0 = 857 MPa, Ro = 0.54 mm.

In the calculations, the value of the work of separation, cP., is fixed and any elevation
of K above Ko in Fig. 5b is a consequence of plastic dissipation. For the elastic solid, the
crack speed is well below the Rayleigh wave speed over the range computed and crack
growth occurs with K/Ko = 1.0. With O'max/O'O = 2.0, the value of K increases slightly above
Ko in the latter stages of crack growth only. With O'max/<10 = 3.0 and 3.5, there is significant
plastic deformation before the onset of crack growth, which gives an apparent increase in
the value of K at initiation. This initiation value of K is sensitive to the value of L\. used to
define the crack location. However, once significant crack growth takes place the sensitivity
to this choice of crack location disappears. With O'max/O'O = 3.0, the value of K increases
rapidly in the early stages of crack growth, reaches a plateau and then increases again. For
this case, the K/Ko level in the range L\a/Ro ~ 2, is in good agreement with the corresponding
quasi-static result in Tvergaard and Hutchinson (1992). For the case with O'max/O'O = 3.5,
the value of K necessary for crack initiation is considerably higher than for O'max/O'O = 3.0.
Additionally, K increases even further during crack arrest, leading to the rapid rise in Fig.
5b.

The data from Figs 5a and 5b are used to plot curves of K/Ko vs crack speed in Fig.
5c. For the calculation with O'max/O'O = 3.0, this curve shows a strong upturn in the stress
intensity factor at a crack speed of about 1200 m/s. This type of dependence of the stress
intensity factor on crack speed is consistent with experimental observations, see, e.g.,
Rosakis and Zehnder (1985) and Zehnder and Rosakis (1990). With viscoplastic material
behavior, the combination of material inertia and dissipation act to limit the attainable
crack speed even when the crack is constrained to grow along the initial crack line. For the
higher flow strength case, O'max/O'O = 2.0, the upturn in K/Ko occurs at a higher crack speed,
iJ ~ 1800 mis, and for the elastic material behavior the curve is essentially flat. The tougher
the material (the higher the value of the ratio O'max/(JO) the lower the crack speed at which
the upturn in the stress intensity factor occurs. Similarly, Mataga et aJ. (1987) in their
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Fig. 7. Contours of Mises effective stress, (T" with (Tmax = 3000 MPa, (To = 1000 MPa and power law
strain rate hardening, (15). The impact velocity is VI = 10 m/s. The extent of the region shown is 4
mm x 2 mm. (a) t = 6.0 Jls, a= 0 m/s. (b) I = 7.0 Jls, a= 969 m/s. (c) t = 8.0 JlS, a= 1217 m/s. (d)

I = 9.1 Jls, a= 1233 m/s.

steady-state analysis using a strain-based growth criterion found that higher critical strains
gave lower crack speeds for the upturn in the stress intensity factor.

It is worth noting that for the case where crack arrest occurs in Fig. 5c, the stress
intensity factor at arrest is significantly larger that the one needed to initiate crack growth,
although it = 0 both at initiation and arrest.

Figure 6, which was also presented in Siegmund and Needleman (1996), shows the
effect ofvarying the impact velocity on the curve ofKI~ vs crack speed. While there clearly
is not a one-to-one correspondence between the value of KIKn and the crack speed, three
cases, those with impact velocities of 10 mis, 15 mls and 20 mis, fall within a fairly narrow
band. For these cases, the crack speed at which the sharp increase in KIKn takes place,
~ 1200 mis, is in good agreement with the experimental values in Rosakis and Zehnder
(1985) and Zehnder and Rosakis (1990).

Contours of Mises effective stress are shown in Fig. 7 for the calculation with
(1max = 3000 MPa, (10 = 1000 MPa and VI = 10 m/s. The contour plots in this study were
obtained using the commercial plotting program Tecplot from Amtec Engineering Inc.,
Bellevue, WA. This contouring program uses nodal values of field quantities, which are
obtained by extrapolation from the element integration points to the nodal points. The
extrapolated values associated with all elements connected to a node are then averaged.
The first stage shown, t = 6.0 liS, is before the initiation of crack growth (see Fig. 5a). The
next two stages, t = 7.0 liS and t = 8.0 liS, are during crack growth, but prior to the
maximum crack speed being reached. At t = 9.1 liS the crack speed is decreasing. A region
of high Mises effective stress behind the current crack tip begins to form in Fig. 7c. In Fig.
7d, the extent of this region has increased greatly. The growth of this region is associated
with the attainment of a maximum crack speed.

The effect of the enhanced strain rate hardening, (16), is shown in Fig. 8, for the case
with (10 = 1000 MPa and (1maxl(1o = 3.0. For comparison purposes, the results for the elastic
solid are also shown in this figure. Compared with the corresponding power law rate
hardening case in Fig. 5, the crack speed is increased, Fig. 8a, the effective stress intensity
factor, K, is reduced, Fig. 8b, and the upturn in the stress intensity~rack speed response
occurs at a higher crack speed, Fig. 8c. The contours of Mises effective stress in Fig. 9 show
that a region of enhanced Mises effective stress behind the crack tip does not develop in
this case.

Contours of Mises effective stress, for the same amount ofcrack growth, are compared
in Fig. 10 for three cases; power law strain rate hardening, Fig. lOa; enhanced strain rate
hardening, Fig. lOb; and an elastic material, Fig. IOc. Although all three cases correspond
to the same amount of crack growth, the times and the crack speeds differ. The contours
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Uo = 1000 MPa, and an elastic material with Unw.x = 3000 MPa. The impact velocity is V, = 10 m/s.
(a) Crack speed, Ii, vs time, t. (b) Normalized stress intensity factor, KIKn, vs normalized crack
growth, tuIlRo. (c) Normalized stress intensity factor, KIKn, vs crack speed Ii. Results for power law
strain rate hardening are denoted by 8" (15), and results for enhanced strain rate hardening are
denoted by 8)E2/(E, +80, (16). A value Ro = 0.40 mm is used for normalizing the results of the

calculation with elastic material behavior.
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Fig. 9. Contours of Mises effective stress, u" with Umax = 3000 MPa, Uo = 1000 MPa and enhanced
strain rate hardening, (16). The impact velocity is V, = 10 m/s. The extent of the region shown is 4
mm x 2 mm. (a) t = 6.0 Jl.S, Ii = 0 m/s. (b) t = 7.0 Jl.s, Ii = 1436 m/s. (c) t = 8.0 Jl.S, Ii = 1784 m/s.

(d) t = 8.3 Jl.S, Ii = 1835 m/s.

for the case with enhanced strain rate hardening are much closer in shape and level to those
for the elastic material than to those for the material with power law strain rate hardening.

The near-tip strain rates for the power law strain rate hardening and enhanced strain
rate hardening materials at this stage ofcrack growth are compared in Fig. 11. Comparing
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Fig. 10. Contours of Mises effective stress, (f" at tia = 1.8 mm with (f"",x = 3000 MPa. The impact
velocity is VI = 10 mjs. The extent of the region shown is 0.8 mm x 0.8 mm. (a) Power law strain
rate hardening and (fo = 1000 MPa (I = 8.1 JlS, Ii = 1237 mjs). (b) Enhanced strain rate hardening

and (fo = 1000 MPa (t = 7.5 Jls, Ii = 1636 mjs). (c) Elastic material (I = 7.0 JlS, Ii = 1871 mls) .
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tip; values are taken at l = 0.06 mm above the crack in the deformed configuration.
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Fig. 12. Contours of the physical component of stress, Un, at lia = 1.8 mm for u""'" = 3000 MPa.
The impact velocity is V, = 10 m/s. The extent of the region shown is 0.8 mm x 0.8 mm. (a) Power
law strain rate hardening and Uo = 1000 MPa (t = 8.1 JJ.S, Ii = 1237 m/s). (b) Enhanced strain rate
hardening and Uo = 1000 MPa (t = 7.5 JJ.S, Ii = 1636 m/s). (c) Elastic material (/ = 7.0 JJ.S, Ii = 1871
m/s). (d) The asymptotic field for a crack in the elastic material for a crack speed of 1871 mls

plotted on the deformed configuration of Fig. 12(c).

Figs 11 a and 11 b shows the larger plastic strain rates that occur for the power law strain
rate hardening material. Evidence of a sector with nearly no plastic strain rate can be seen
in Fig. lla. Also, note the reloading zone behind the current crack tip. Figure llc shows
curves of effective plastic strain rate, ~ and total effective strain rate, 1:eff, vs yl at l = 0.06
mm above the crack plane. The total effective strain rate is defined by

(25)

These curves were obtained from the contour plots in Figs lla and llb using facilities in
Tecplot. For the power law strain rate hardening material, the curves labeled 1:], the main
contribution to the peak total strain rate is the plastic strain rate. On the other hand, for
the material with enhanced strain rate hardening, labeled 8J82/(1:1+[;2), the peak strain rate
is mainly elastic. In both cases the deformation occurs in a narrow zone at the actual crack
tip. In the rate independent, steady state case analyzed by Varias and Shih (1994) a jump
was found in the effective plastic strain as a material point passes over the crack tip. Our
results, which include strain hardening and two types of strain rate hardening, give high
plastic as well as total strain rates in a relatively narrow band.

Contours of the physical stress component (T22 at this stage of crack growth are shown
in Fig. 12, where

(26)

and iY are the contravariant components of Kirchhoff stress on the deformed coordinate
net. Because the strain magnitudes remain small, except very near the crack tip, the physical
component (T22 is not very different from the tensor component 'l'22 over most of the region
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Fig_ 13. The distributions of (a) Mises effective stress, (T" (b) equivalent plastic strain, l, (c) the
physical component of stress, (T22' at the crack tip at lia = 1.8 rom and (T""", = 3000 MPa for cases
of power law strain rate hardening (t = 8.1 jlS, Ii = 1237 m/s), enhanced strain rate hardening
(t = 7.5jls, Ii = 1636 m/s) (both with (To = 1000 MPa) and the elastic material (t = 7.0 Jl.S, Ii = 1871
m/s); V, = 10 m/s; values are taken at y2 = 0.01 rom above the crack in the deformed configuration.
Results for power law strain rate hardening are denoted by 6" (IS), and results for enhanced strain

rate hardening are denoted by 6,62/(6, +62), (16).

shown. For comparison purposes, the asymptotic field for a linear elastic solid is shown in
Fig. 12d. The crack speed and the deformed mesh in Fig. 12d are taken to be the same as
for the elastic material calculation in Fig. 12c. The stress levels in the asymptotic field in
Fig. 12d are noticeably higher than for the calculation in Fig. 12c. This is because the
cohesive surface strength of (1max = 3000 MPa limits the attainable stress level in Fig. 12c.
However, the contour shapes are quite similar in these two figures. Furthermore, the
distributions for the elastic material, Fig. 12c, and for the material with enhanced strain
rate hardening, Fig. 12b, are quite similar.

Figure 13 shows variations of various field quantities with i at a fixed distance
(I = 0.01 mm) above the crack plane. The variations of Mises effective stress in Fig. l3a
show that ahead of the crack the effective stress distribution for the material with enhanced
strain rate hardening is much like the distribution for the elastic material; behind the crack
the distribution has a shape similar to that for the power law strain rate hardening material,
but the level is much lower. As seen in Fig. l3b, the accumulated effective plastic strain,
s = J~ dt, is reduced by about a factor of four for the material with enhanced strain rate
hardening. Note that the plastic strain level is essentially constant behind the current crack
tip for the case with enhanced strain rate hardening, although the crack speed is not
constant over this interval (see Fig. 8). On the other hand, with power law strain rate
hardening, the amount of plastic strain near the current crack tip tends to increase with
crack growth. This increase in plastic strain becomes more pronounced when the crack
slows down and is particularly enhanced when crack arrest occurs. Figure l3c shows the
variations in the physical opening stress component, (122 defined in (26). A log-log regression
over the interval 0.2 ?J;(yl-a)/Ro?J; 0.6 gives a fit to (i-aY with p having the values
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Fig. 14. Comparison of crack growth behavior for two cases; enhanced strain rate hardening
u""'" = 3500 MPa and Uo = 1000 MPa, and power law strain rate hardening with u""'" = 3500 MPa
anduo = 1000 MPa. Theimpaet velocity is V, = IOm/s. (a) Crack speed, a, vs time, t. (b) Normalized
stress intensity factor, KIKo, vs normalized crack growth, lialRo. (c) Normalized stress intensity
factor, KIKo, vs crack speed a. Results for power law strain rate hardening are denoted by Bh (15),

and results for enhanced strain rate hardening are denoted by E,B2/(E, +B2), (16).

p = -0.41, -0.32, -0.21 for the elastic case, the enhanced strain rate hardening case and
the power law strain rate hardening case, respectively.

Fields for the case with power law rate hardening and (1nuu/(1o = 2.0 (see Fig. 5) are
now shown here. Nevertheless, it is worth noting that the contours of Mises effective stress
for this case are very similar to the ones depicted in Fig. 10c and the contours of the physical
stress component (122 to the ones in Fig. 12c. The size of the active plastic zone, i.e., the
region where the plastic strain rate is non-negligible, remains small.

Figures 14-16 show results for a case where the cohesive surface strength is increased
to (1max = 3500 MPa, with (10 = 1000 MPa. Although the ratio (1max/(10 = 3.5 is the same as
for a calculation shown in Fig. 5 for power law strain rate hardening, (10 = 1000 MPa in
Figs 14-16, whereas (10 = 857 MPa in Fig. 5. For the calculations in Figs 14-16, ~ = 66
MPa~ and Ro = 0.46 mm. With power law strain rate hardening, crack arrest occurs in
Fig. 14a, with crack growth resuming after the arrival of the second loading wave. There is
a delay between the arrival of the second loading wave at t = 14.94 itS and the resumption
of crack growth. The increase in crack speed at t ~ 20.5 itS occurs before the third loading
wave arrives at t = 24.9 itS. With the enhanced strain rate hardening relation in Fig. 2, a
maximum crack speed is attained at nearly the same time as at the first peak for the power
law strain rate hardening material. However, crack arrest does not occur over the range of
crack growth computed (the computation is terminated when the crack approaches the end
of the uniform mesh region). Plots of the normalized stress intensity factors versus crack
extension are shown in Fig. 14b. For the material with power law strain rate hardening, a
large increase in K accompanies crack arrest. The value of K at which crack growth
reinitiates with the second loading wave is about 2.5 times larger than the value of K at the
initiation of crack growth. In A533-B steel specimens, Bonenberger and Dally (1995) have
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Fig. 15. Contours of Mises effective stress, (T" with (Tma, = 3500 MPa and (To = 1000 MPa. The
impact velocity is V, = 10 m/s. The extent of the region shown is 0.93 mrn x 0.93 mm. (a) Power
law strain rate hardening at 1= 9.0 JlS (&0 = 0.32 mm, Ii = 750 m/s). (b) Enhanced strain rate
hardening at 1=9.0 JlS (~a = 1.85 mm, Ii = 1595 m/s). (c) Enhanced strain rate hardening at

1= 10.0 JlS (~a = 3.43 mm, Ii = 1509 m/s).

found that the K value for crack reinitiation is substantially greater than the crack arrest
value. The results in Fig. 14 are consistent with this observation.

Contours of Mises effective stress are shown in Fig. 15 for the power law strain rate
hardening material at t = 9.0 j1.s, Fig. 15a, and for the material with the enhanced strain
rate hardening at t = 9.0 j1.S, Fig. 15b, and at t = 10.0 j1.S, Fig. 15c. Because of the very
different crack growth histories, the crack extension at t = 9.0 j1.S is !!.a = 0.32 mm for the
power law rate hardening material with!!.a = 1.85 mm at t = 9.0 j1.S and!!.a = 3.43 mm at
t = 10.0 j1.s for the material with enhanced strain rate hardening. Contours for the power
law material in Fig. 15a show a region of relatively high Mises effective stress behind the
current crack tip. For the material with enhanced strain rate hardening such a region is not
present at t = 9.0 j1.S, while at t = 10.0 j1.S, which corresponds to decreasing crack speed,
such a region has formed. The Mises effective stress levels are also much higher for the
material with enhanced strain rate hardening, Figs 15b and 15c.

Figure 16 shows corresponding contours ofeffective plastic strain rate. For the material
with enhanced strain rate hardening a zone of secondary plastic loading behind the crack
tip is formed only at decreasing crack speed, Fig. 16c. In Fig. 16b, which is at a stage where
the crack speed is increasing, the contours of effective plastic strain rate are similar to those
in Fig. lOb. The plots in Fig. 16d show that the effective plastic strain rate is nearly the
same as the total effective strain rate for the material with power law strain rate hardening,
whereas for the material with enhanced strain rate hardening, the main contribution to the
total strain rate is the elastic one. This changes only a little with the formation of the
secondary zone with significant plastic straining.

Balance of energy requires the work of the applied loading to equal the sum of the
kinetic energy ofthe material, the elastic energy stored in the material, the plastic dissipation
and the cohesive surface energy. The relative magnitudes of the last two contributions, the
plastic dissipation (f or: J)P dt) and the cohesive surface energy, (19), are plotted against the
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Fig. 16. Contours of equivalent plastic strain rate, ~, with G~ = 3500 MPa and Go = 1000 MPa.
The impact velocity is VI = 10 mjs. The extent of the region shown is 0.93 mm x 0.93 mm. (a) Power
law strain rate hardening at t = 9.0 /lS (~= 0.32 mm, Ii = 750 mjs). (b) Enhanced strain rate
hardening at t = 9.0 /lS (l\a = 1.85 mm, Ii = 1592 mjs). (c) Enhanced strain rate hardening at
t = 10.0 /lS (l\a = 3.43 mm, Ii = 1509 mjs). (d) Distribution of equivalent plastic strain rate and
equivalent total strain rate at the crack tip. Values are taken at I = 0.06 mm above the crack in the

deformed configuration.

(c)

amount of crack growth in Fig. 17 for four cases; Um<lx/Uo = 3.0 and umax/UO = 3.5, with
both power law and enhanced strain rate hardening for each value of umax/UO' The energy
values in Fig. 17 are for a metre thickness and pertain to the quarter of the specimen
analyzed numerically. With enhanced strain rate hardening and umax/uo = 3.0, the cohesive
energy is somewhat larger than the plastic dissipation. With power law strain rate hardening
and umax/uo = 3.0, the plastic dissipation exceeds the cohesive energy in the latter stages of
crack growth. This is similar for the calculation with enhanced strain rate hardening and
umax/UO = 3.5. However, with power law strain rate hardening and umax/uo = 3.5 the plastic
dissipation exceeds the cohesive energy by an order ofmagnitude. This is the case for which
crack arrest occurs.

4. DISCUSSION

Dynamic crack growth has been analyzed using a framework where the crack growth
history is a direct outcome of the analysis, determined by the cohesive surface properties
(the strength and the work of separation), by the material properties and by the imposed
loading. In the calculations here, the crack has been restricted to grow along the initial
crack line. The focus has been on the effect of strain rate hardening on crack growth and
arrest under dynamic loading conditions. With material properties taken to be rep­
resentative ofa structural steel, a crack speed is reached at which the effective stress intensity
factor increases dramatically. This crack speed, which depends on the loading as well as on
material and cohesive properties, essentially serves as a limiting crack speed.

This can be contrasted with the case of an elastic solid where, for straight ahead crack
growth, the Rayleigh wave speed is the limiting crack speed, e.g., Freund (1990), and crack
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branching leads to attainable crack speeds in isotropic elastic solids being less than the
Rayleigh wave speed, as in Xu and Needleman (1994).

The course of crack growth in plastic or viscoplastic solids is, to a large extent, set by
the dissipation accompanying inelastic deformation. A key parameter is the ratio of the
material flow strength to the cohesive surface strength, Needleman (1990b), Tvergaard and
Hutchinson (1992). Assuming that the cohesive properties are independent of temperature
and that the main effect of a temperature change is through its effect on the flow strength,
Fig. 5 can be viewed as illustrating the effect of specimen temperature on dynamic crack
growth. Increasing values of (Jnwx/(Jo correspond to increasing temperature. At very low
temperatures, macroscopic plasticity makes a negligible contribution to the effective tough­
ness, so that the macroscopic toughness directly measures the resistance associated with
the separation process. At higher temperatures, illustrated by the results for (Jmax/(JO = 3.0,
the apparent toughness increases substantially. With a further increase in temperature,
the crack arrests after some initial crack growth. A ductile-brittle transition is generally
associated with a change in fracture mechanism, with plastic void growth being the ductile
fracture mechanism and cleavage the brittle fracture mechanism. Analyses using physically
based models for these two mechanisms reproduce the observed transition, e.g., Tvergaard
and Needleman (1993), Needleman and Tvergaard (1995), Gao et al. (1996). Here, although
a change in mechanism is not modeled, the results in Fig. 5 suggest a ductile-brittle
transition for dynamic crack growth simply arising from the decrease in flow strength with
increasing temperature, even with the material characterized as power law strain rate
hardening. On the other hand, at a fixed temperature, i.e., at a fixed value of the flow
strength (Jo, and with the loading rate varied, whether the strain rates at the crack tip are
within the power law or enhanced strain rate hardening regime plays a major role in
determining ductile (high toughness) versus brittle (low toughness) response.

The enhanced strain rate hardening at high strain rates leads to less plastic straining
and therefore to a more brittle response, Fig. 8 and Fig. 14; crack speeds are higher and
the effective toughness is reduced. The enhanced strain rate hardening also gives rise to
higher near tip stress levels. As a consequence, a higher toughness is required for crack
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arrest, Fig. 14. For power law viscous materials, the fields at a growing crack undergo a
change in character at rate exponents m in (15) equal to 1/3; for values of m less than 1/3
the near tip fields are the HRR fields, Hutchinson (1968) Rice and Rosengren (1968),
whereas for m greater than 1/3 the near tip fields are the elastic singular fields, Hui and
Riedel (1981) for quasi-static growth and Lo (1983) for dynamic growth. The viscoplastic
flow rule used in the present calculations is history dependent and the near tip-fields are
not quite the same as the elastic near-tip fields. Nevertheless, a similar transition occurs,
with plastic strain rates dominating in the low rate regime and elastic strain rates dominating
in the high rate regime, where the strain rate hardening is much greater. Furthermore, the
stress distributions become more like those for an elastic growth crack than for the power
law rate hardening material. The dominance of elastic strain rates and a change in the
character of the crack tip fields to the elastic fields are key assumptions of the analysis of
dynamic crack growth in Freund and Hutchinson (1985). Our analyses suggest that these
are reasonable approximations in the enhanced strain rate hardening regime.

Regardless ofthe strain rate hardening description, a feature in most ofour calculations
for viscoplastic solids is that the crack speed increases, reaches a maximum and then
decreases. This crack speed maximum is associated with the development of a region of
increased Mises effective stress, Figs 7d, lOa, 15c. When a maximum does not occur, as for
the calculation with umax/Uo = 2.0 in Fig. 5 and for the case with enhanced strain rate
hardening in Fig. 8, a region behind the current crack tip with increased Mises effective
stress does not develop.

The results for pure power law strain hardening can be regarded as having been
obtained for a relation of the form in Fig. 2, but where the transition strain rate is greater
than the strain rates occurring anywhere in the material. Thus, the comparison between the
materials with power law strain rate hardening and enhanced strain rate hardening illus­
trates circumstances where strain rates are below and above the transition strain rate,
respectively. This comparison is particularly interesting in Fig. 14, where crack arrest occurs
for the power law rate hardening material but not for the material with enhanced strain
rate hardening. Thus, whether or not crack growth rates are fast enough for the near-tip
material to enter the enhanced strain rate hardening regime may be a significant factor in
determining if crack arrest occurs.

Under quasi-static conditions, crack growth in a plastic solid with strain hardening
characteristics like those used here can only occur for values of the cohesive strength up to
3.5-4.0 Uo; higher values of the cohesive strength essentially preclude crack growth, Tver­
gaard and Hutchinson (1992). For fast cracks, continued crack growth is possible for higher
values of the cohesive strength if the crack speed is large enough for the material in the
crack tip region to enter the regime where enhanced strain rate hardening comes into play.
This suggests, at least within the framework of this cohesive surface model, that if a crack
initiates in a weak region or brittle phase, attaining a crack speed fast enough for enhanced
strain rate hardening may be necessary for crack propagation to continue into the tougher
region or more ductile phase.
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